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Finite-size scaling in the steady state of the fully asymmetric exclusion process
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Finite-size scaling expressions for the current near the continuous phase transition and for the local density
near the first-order transition are found in the steady state of the one-dimensional fully asymmetric simple-
exclusion process with open boundaries and discrete-time dynamics. The corresponding finite-size scaling
variables are identified as the ratio of the chain length to the localization length of the relevant domain wall.
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[. INTRODUCTION the second derivative with respect to () undergoes a
finite jump. The coexistence line between the low- and high-
We consider the fully asymmetric simple-exclusion pro-density phases is given byrE 8,0<B8=<f.); on crossing it
cess(FASEPR on a finite chain ofL sites with open bound- the bulk density undergoes a finite jump.
aries. For mathematical definition of the exclusion processes Here, the exact finite-size expressions for the current and
we refer the reader to the bogk], and for a recent review local density in the steady state of FASEP with open bound-
on the relevant class of exactly solvable models for manyaries and forward-ordered sequential update, derived in Ref.
body systems far from equilibrium to Re®], see also Ref. [10], are analyzed within the framework of finite-size scaling
[3]. We recall that each sitee{1,2,...,L} of the chain is (FSS at continuougfor the current and first-order(for the
either empty or occupied by exactly one particle. The pardensity phase transitions. The appropriate scaling variables
ticles obey a discrete-time stochastic dynamics according tare identified and the corresponding scaling functions for the
which they hop with probabilityp only to empty nearest- current and local desity are explicitly obtained. The notions
neighbor sites to the right. The open boundary condition®f the Privman-Fisher anisotropic FSS have been recently
imply that at each time stefupdate of the whole chaira  extended to nonequilibrium systems belonging to the di-
particle is injected with probabilityr at the left end of the
chain (=1), and removed with probability at the right 1.0 T Y T T
end (=L). The order in which the local hopping, injection
and particle removal takes place is specified by one of the
basic discrete-time updates, see Réf. Here we explicitly 0.8
consider the case of forward-ordered sequential update. p |-
We mention that the case of random-sequential update ~~.
was solved first by using the recursion relations method ~<
[5,6], and then by means of the matrix-product angkt2A) : ~
[7]. Next, the method of MPA was successfully applied for ﬁ
obtaining the steady-state properties in all the basic cases of !
true discrete-time dynamics: forward-—() and backward- 04 - :
ordered () sequential[8—10], sublattice parallel £|) Al I
[11,17], and, finally, fully parallel dynamicgl3,14. i
The phase diagram for all the discrete-time updates has 02 |- Bl E Bl .

the same structure, as shown in Fig. 1. it contains a
maximum-currenfMC), low-density(LD), and high-density

(HD) phases. The maximum-current phase is separated by 0.0 . ,
lines of continuous phase transitiong= a;,B.<B<1) 0.0 0.2 04 o 06 P 08 1.0
and (B=pf.,a.<a<1), from the low-density and high-
density phases, respectively. Herg and 3. are the critical o
values of the injection and removal probabilities

FIG. 1. The phase diagram in the plane of the injection and
o removal probabilitiesr and 8 (see the tejtfor hopping probability
ac=pBc=1-v1-p. (1) p=0.75. The maximum-current phase occupies region C. Region
. - . A=AIUAII corresponds to the low-density phase, and region B
The above phases weret |denpf|ed with respect.to the analytic g ;g to the high-density phase. Subregions @) and All
form of the bulk current: for fixeg, the current in the low-  g)) are distinguished by the different analytic form of the density
(hlgr_\') density phase depe_nd_s only @en(B), and in the  yrofile. The boundary between thefi= ., 0<a<a, (a=ay,
maximum-current phase it is independent of battand 8. 0<pg=<pg,), is shown by dashed segment of a straight line. The
On crossing the border!lne between the maximum-curréngolid line a= 3 between subregions Al and Bl is the coexistence
and the low-(high-) density phase, the current itself and its line of the low- and high-density phases. The curved dashed line is
first derivative with respect ta (8) change continously, and the mean-field line (+ a)(1—8)=1—p.

1063-651X/2002/68})/0461116)/$20.00 65046111-1 ©2002 The American Physical Society



JORDAN BRANKOV PHYSICAL REVIEW E 65046111

rected percolation and diffusion-annihilation universality and )\glzo in the MC phase. Hence, the FSS variable as
classe43,15,16. To the best of our knowledge, the present|. = andé—1" is expected to be given by

study is the first step in the analytic confirmation of FSS for

an exactly solved model of a driven lattice gas with open L/ L(é-1)? (Lt 6
boundaries. Since we are dealing with phase transitions in ¢ gat2) =x3(L,1), ©®)

the steady-state of the FASEP with discrete-time updates, the

equvalent two-dimensional lattice model is infinite in the where

temporal direction but finite in the spatial one. 12 - _1 -

Note that the current has the same value in the cases of ~Xu(L,D=CqitL™5  Cy=(a+2)"% t=£-1. (V)
forward-ordered ), backward-ordered «{) sequential,
and sublattice-parallelsf|) dynamics, i.e.J;"=J =J%1.
The corresponding local densities at site{1,... L} are
related to each othgd.2]:

We emphasize that here we study a boundary induced non-
equilibrium phase transition, and the physical quantity which
measures the distance from the steady-state critical point is
related to the injection probability=¢—1~1—a/a.
. . Consider now the finite-size currentJ, (&, 7)
N T PP L1 (i), i odd, o =Zi-a(ém)/Zu(£7), whereZ, (¢,7) is the normalization
pL(D)=p ()=3, pl(i)= p(i), i even. 2) constant of the steady-state probability for a latticé sftes.
The following exact representation &@f (£, 7) in the subre-

As shown in Ref[13], the currentl] and local density| (i) ~ 9ion All of the low-density phase¢t-1= 7) has been found

for the FASEP with fully parallel update can be simply ex-in Ref.[10]:
pressed in terms of those for the forward-ordered sequential

date: Al dit¢-¢ —1\L_, 7MC
upcate: Zo(&m=|5] = - @rer e+ ).
P N L , ®
L_1+J?' pLl)= 1+ B Here the expression for the normalization constant in the

maximum-current phaset ¢ ),

Due to these relations, the results derived here suffice to

explicitly obtain the current and density FSS functions for zZVC(&,n) =
each of the basic discrete-time updates. Concerning the no-
tation, we note that the exact finite-chain results obtaine%
in Ref. [10] are conveniently expressed in terms of the
parameters wa (a+2 cos¢p)-sirf ¢

W(O= ), 9 T 2ecospr &2

p

volves the integral

L
[§_§H=L<§>+nf§un), )

(10

o _ 1 _p~a _p—B
d=yil=p, a=d+d-, ¢ n 7 Bd ’ which is a nonanalytic function of at é&=1. For all finiteL
(4 the normalization constai"' (¢,7) in region All represents
. . an analytic continuation oZ}(¢,7) from the domain|¢|
which will be used here too. <1 to the domair&|>1, see Ref[10].
A direct application of Laplace’s method for evaluation of
II. FINITE-SIZE SCALING AT THE CONTINUOUS PHASE the integral(10) asL—c< shows that it changes its leading-
TRANSITION order asymptotic behavior fronO(L"%?) for é+#1 to
o , » O(L™ Y2 for £=1, see Eq(14) in Ref.[17]. The finite-size
Let us consider first the continuous phase transition acroSSypression that interpolates between these limiting
the boundarya=ac,B.=<B<1 between the low-density ,qymniotic forms can be readily obtained by using small-

phase and the maximum-current phase. In terms of the varkg ment expansion of the trigonometric functions in the in-
ables(4) the equation of th|§ boundary reaﬂs 1, —d=9yg tegrand. The result faxy(L,t)=0(1) is
<1; the MC phase occupies the regiend=é<1, —d

<p=<1, and the regioré>1=n=—d, called region All, (8 (a+2)'—*1’zx(| ) a1
7 . =—X(|x4]),
lies in the LD phase, see Fig. 1. L g\/ﬁ 1

According to the basic FSS hypotheses, the FSS variable
in th_e case of a con_tinuous transition, charapterized by digyhere the FSS functiod( -
verging bulk correlation length, should be given by the
ratio L/, wherelL is the finite-size of the system. As it is , 2 (x
well known, in the case at hand the inverse correlation length X(x)=1— Jxet [1-D(x)], D(x)= —J e dt.
N tin the LD phase is, see, e.g., Reff$4,17, Vmlo

-) is given by

(12
(6-1)

M rar2)

- Thus, keeping the I/ corrections to the finite-size scaling
(&=1), 5 .
form, we obtain

—1_
Ng =In
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MC ( )L 1 (a+2)-7172 asL—o and é—1" at fixed <1. With the aid of the
Z n)=|— ; o
L (&m) ol =7 JaL identities
da+E+EDIL 1(H-1U(H]=1L-1(0), (2D
x| X(x:)) = e | (13)
(1-n)" 2L L@+ é+E DI (n)—1(n)]
The small- and large-argument asymptotic behavior of =1 _1(O)+(E=n)(np—&EHl_1(n), (22
X(---) readily follows from that of the Fresnel integral o )
O(---): we obtain in the leading order
1—Jmx+0(x?), as x—0, All LD P 1
(€ ) —d (§)=+ 2 .
Xx)=y1 , 3 , . (14) L 2d(a+2)| 2\/7x, e+ X(x,)
X T X O, as X—e. (23

i . . .. Hence, by using Eq(14) we readily derive the asymptotic
Let us first evaluate the asymptotic behavior of the finite-panavior of the above finite-size correctionyas-0" (say

size correction to the bulk current in the maximum—currentas ¢—1" at large fixedL):
phase

1 p
c AhEn  p B =32W={ 35m72 (24)

MC M

In the other limiting case;—« (say,L—o at ¢&>1 fixed

asL— and¢é— 1~ at fixed p<1. We readily obtain in the close to unity, we obtain that the finite-size corrections to
leading order of magnitude ' the current are exponentially small:

1§32 2 (= e XD 3, )= IP(E)=0(x; e ). (25)
a+2)l, _ —1 = — . . .
¢l M-1(8) = 1(e)] &2 o X 1+ x2 As a finite-size order parameter of the continuous phase
a transition one could consider the difference in the finite-size
(a+2) currents

= ———[1-2x{X(|x4])].
3/2
2/ ALE )= -3 (e ) (E>1m<1). (26)

Here J’Q"C(g,n) represents the analytic expression for the
Hence we derive finite-size current in the maximum-current phase, 'S
=27ZMC1zMC with ZMC defined by Eqs(9) and (10), evalu-
(17) ated in subregion All of the low-density phasat £&>1,7
<1). For the corresponding bulk quantity we have

(16)

1—2x3X(|x4])
X(|x4])

1 p
L 2d(a+2)

INC(g,m)—IMC=

The asymptotic behavior of the above finite-size correction MC LD (a—a)?
to the current ax;—0~ (say, asé—1~ at large fixedL) An(§)=32"—Jz (§)=m, (27
follows from Eq.(14):

which suggests the critical exponent for the order parameter

MC MC__ 1 p B=2. In the finite-size case, by taking into account that
(L) == 2d(at2)" (18 2
p p 1 p X1
In the limiting casex;— — (say,L—« at £<1 fixed close d(a+2) d(a+é+&Y) T Ld(a+2) 1+x3/L’
to unity), we obtain that the finite-size correction is again of (28)

the orderO(L ™ 1):
and combining the above results, we obtain in the leading

MC MC__ 1 3p order
1 p X1
Consider next the asymptotic behvior of the finite-size AL(g-”)z[ 2d(a+2) 1
correction to the bulk current in the low-density phase X(X1)| X1+ —e—Xfx(xl)
2\m
All (29
J’C"(f,n)—J;D<§>=ZL;|,1(§'") T _ _ _ _
zM(g,m)  d(até+ETD Since the high-density phase maps onto the low-density

(200  phase under the exchange of argumentszn (equivalently,
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a—B), the FSS properties of the continuous transitionFor brevity of notation we have omitted the argumehtnd

across the boundarg= 8., a.<a<1 between the high-

n of the function Z (&, 7). Here the term F (i)

density phase and the maximum-current phase follow trivi=F (i; ¢, ) is the antisymmetri¢with respect to the center

ally from the above results and the particle-hole symmetry.of the chain function of the

Ill. FINITE-SIZE SCALING AT THE FIRST-ORDER
TRANSITION

In the thermodynamic limit the first-order phase transi-

tion, which occurs across the borderlile= o, O<a<a,

(n=¢&,&£=1) between subregions Al and BI, manifests itself

by a finite jump in the bulk density

n—n "t
Pk 1) = poai E)|¢= y=—————>0.

— (30
atntny

Quite peculiarly, this transition is characterized by another

diverging correlation length

-2

1-9
AN i=n A =——— - 9|+ O(|E— 7]?),
INg "=, a+77+77’1|§ 7+ O(|€—7|?)
(31
which suggests the finite-size scaling variable
~ 1-52
Xo:=L/N=C,lh|L, Co=————, h=é-n
at+nt+ny
(32)

integer coordinatd,
FL(i;é&,n)=—F (L—i+1;¢7), defined for i<[L/2]
(where[x] denotes the integer part &) by the equation

d L—1 L—2i
FL(i§§,77)=(B) (1_577)20 Ioion-1(Olivn-1(n).
(39

The normalization constant in the region=RAIUBI (¢
>1,7>1) for £+ 5 is given by

d\-(a+2)"
ZE(fJ])Z E) (f_’/]) [(é— g—l)eLlhg_(n_ n—l)eL/)\ﬂ]
+2Y°(&, 7). (36)

Let us analyze this expression whér »+h, h—0. For
ZMC(5+h, ) we have

ZV(p+h,m)=

d\‘1
5) H[(ﬂ"’ I (n+h) =7l ()]

d L
=—<5> ("= DK(m+0(h), (37

where

Our analysis starts with the exact result found for the

finite-chain local densit;of’(i;g,n) in region D=AlUBI of
the phase diagram, see E@4.21) and (A13) in Ref.[10].
This result can be cast in the forn§= 7)

1— -
pPiEm= PR e+ D26, (39
where
~ d\t(a+2)t1*
QD(i;g, )= —> —[(1—§_Z)e(L_1)/)‘§
ST 2P
+ (=Y (= g Heli— D=,
d\“(a+2)-*
—(P—1)elt- D, | =
(n°—1)e ] <p 20
Z1a (i p\-= S
_ 1\ ali—1)/ =
Jienmmiy 2
_ . p\'"t zZ'S
_ _ 1\ a(L I)h‘ﬂ ~
(e (d) (a+2)*
*2p 0 FL(i: &) — (- nZM9zY<
L
P MC MC
+g2lc-az, . (34)

« B 2[# (a+2 cosp)-sir¢ a8
For é=n+h, asL—~ andh—0 we have
L/N+n=L/N,+CohL+0O(Lh?), (39
hence
L CZhL—l
Z2(nthem=| 5] (@+2)"| (r= 7 He P —p—
+0(1)]|. (40)

Next, by using the upper boung(&)<(a+2)¥14(£), where
lo(&)=1 for [¢]<1 andly(&)=¢&2 for |£|=1, one easily
obtains that in region D

d

L—-1 -1
|FL(i;§=77)|$:<_> £

§2—772(|_—1)(a+2)“2.
(41)

p

Therefore, in view of Eq(40), the contribution of the term
proportional toF (i;&,7) into the local density is exponen-
tially small. Thus, only the first three terms in the right-hand
side of Eq.(34) contribute into the leading-order expression

for QP (n+h,7):
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B 7t eCohi_ 1 eigenvalue that splits up from the continuous spectrum and
QE(i ip+h, )= —— (- nfl)cT_ dominates the properties of 'the high—densit.y phase in region
atntny erzm—1 Bll is v(%). Thus, the logarithm of the ratio of the corre-

(42 sponding eigenvalue to the ceiling of the continuous spec-

In deriving the above expression we have assumed that boffHM defines the relevant inverse correlation lengftt or

71 . .
i>1 andL—i>1. Finally, by taking into account that A, see EqQ(5). When both¢>1 and7>1, which is the
case in region B AlUBI, there are two eigenvalues(¢)
5 p and v(7), above the continuous spectrum. Obviously, these
Ji(n+ hﬂ?)Zm*‘O(h), (43)  eigenvalues become degenerate on the coexistencet line
nt+7n

= 5>1, which explains the appearance of the diverging cor-

we obtain the leading order expression for the local densitj€'ation length31). Note that the explicit expressions for the

on the macroscopic scalé =r, 0<r<1: correlation lengths depends on the type of update only: they
’ ' are the same for all the true discrete-time updates, and for the

1 Xl — 1 random sequential update, see Et) in Ref. [7],
pL(rL;é, )= ————|d+n "+ (n—n H—|.
atntny e2—1 2
(44) 1 (1/2— @)
A, =In1+——|. (47)
@ a(l—a)

Here we have introduced the FSS variakje= C,hL, com-

pare with Eq.(32). In the limit x,—0 the above expression i ) .
reduces to the well-known linear density profile on the coex- "€ Physical meaning of the above correlation lengths
istence linet= 7: emerges in the domain wall picture developed in R&9]:

the lengthsh,, \,, and\ are interpreted as localization
. . lengths of the domain walls between the low-density—
d+n "+(np=—n")r (45) maximum-current, high-density—maximum-current, and low-
at+n+nyt ' density—high-density phases, respectively. The complete de-
localization of the low-density—high-density domain wall on
the coexistence line explains the linear density préfi®: it
is the result of ensemble averaging over configurations with
uniform probability distribution of the domain wall position
[6].
IV. DISCUSSION Thus, the FSS variable for any of the phase transitions in
The mathematical mechanism of the phase transitions iff’€¢ FASEP with open boundaries has the physical meaning
the FASEP with open boundaries has been revealed in Re$f a ratio of thg chain length to t_h_e Iocal|zat_|on length of the
[10] as qualitative changes in the spectrum of the Iatticéelevfim domain wall. The .epr|C|t expressions for the F_SS
translation operato€ [18]. In the regioné<1, y<1, occu- unctions have been derived here for the model with
pied by the maximum-current phase, the spectrum is continforward-ordered sequential update. The corresponding ex-
ous and fills with uniform density the interval fromd/(p) pressions for the other basic discrete-time updates follow un-
X(a—2) to (d/p)(a+2). Wheny=<1 but¢ becomes larger der the mappings mentioned in the Introduction.
than unity, an eigenvalue

pL(rL;m,7)=

In the limit x,— 4+ (X,— — ) one recovers the bulk den-
sity in the low-density(high-density phase.
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