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Finite-size scaling in the steady state of the fully asymmetric exclusion process
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Finite-size scaling expressions for the current near the continuous phase transition and for the local density
near the first-order transition are found in the steady state of the one-dimensional fully asymmetric simple-
exclusion process with open boundaries and discrete-time dynamics. The corresponding finite-size scaling
variables are identified as the ratio of the chain length to the localization length of the relevant domain wall.
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I. INTRODUCTION

We consider the fully asymmetric simple-exclusion pr
cess~FASEP! on a finite chain ofL sites with open bound
aries. For mathematical definition of the exclusion proces
we refer the reader to the book@1#, and for a recent review
on the relevant class of exactly solvable models for ma
body systems far from equilibrium to Ref.@2#, see also Ref.
@3#. We recall that each sitei P$1,2,. . . ,L% of the chain is
either empty or occupied by exactly one particle. The p
ticles obey a discrete-time stochastic dynamics accordin
which they hop with probabilityp only to empty nearest
neighbor sites to the right. The open boundary conditio
imply that at each time step~update of the whole chain! a
particle is injected with probabilitya at the left end of the
chain (i 51), and removed with probabilityb at the right
end (i 5L). The order in which the local hopping, injectio
and particle removal takes place is specified by one of
basic discrete-time updates, see Ref.@4#. Here we explicitly
consider the case of forward-ordered sequential update.

We mention that the case of random-sequential upd
was solved first by using the recursion relations meth
@5,6#, and then by means of the matrix-product ansatz~MPA!
@7#. Next, the method of MPA was successfully applied
obtaining the steady-state properties in all the basic case
true discrete-time dynamics: forward- (→) and backward-
ordered (←) sequential@8–10#, sublattice parallel (s-i)
@11,12#, and, finally, fully parallel dynamics@13,14#.

The phase diagram for all the discrete-time updates
the same structure, as shown in Fig. 1: it contains
maximum-current~MC!, low-density~LD!, and high-density
~HD! phases. The maximum-current phase is separated
lines of continuous phase transitions (a5ac ,bc<b<1)
and (b5bc ,ac<a<1), from the low-density and high
density phases, respectively. Hereac andbc are the critical
values of the injection and removal probabilities

ac5bc512A12p. ~1!

The above phases were identified with respect to the ana
form of the bulk current: for fixedp, the current in the low-
~high-! density phase depends only ona (b), and in the
maximum-current phase it is independent of botha and b.
On crossing the borderline between the maximum-curr
and the low-~high-! density phase, the current itself and
first derivative with respect toa (b) change continously, and
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the second derivative with respect toa (b) undergoes a
finite jump. The coexistence line between the low- and hig
density phases is given by (a5b,0<b<bc); on crossing it
the bulk density undergoes a finite jump.

Here, the exact finite-size expressions for the current
local density in the steady state of FASEP with open bou
aries and forward-ordered sequential update, derived in
@10#, are analyzed within the framework of finite-size scali
~FSS! at continuous~for the current! and first-order~for the
density! phase transitions. The appropriate scaling variab
are identified and the corresponding scaling functions for
current and local desity are explicitly obtained. The notio
of the Privman-Fisher anisotropic FSS have been rece
extended to nonequilibrium systems belonging to the

FIG. 1. The phase diagram in the plane of the injection a
removal probabilitiesa andb ~see the text! for hopping probability
p50.75. The maximum-current phase occupies region C. Reg
A5AIøAII corresponds to the low-density phase, and region
5BIøBII to the high-density phase. Subregions AI~BI! and AII
~BII ! are distinguished by the different analytic form of the dens
profile. The boundary between them,b5bc , 0<a<ac (a5ac ,
0<b<bc), is shown by dashed segment of a straight line. T
solid line a5b between subregions AI and BI is the coexisten
line of the low- and high-density phases. The curved dashed lin
the mean-field line (12a)(12b)512p.
©2002 The American Physical Society11-1



ity
n
fo
e
s
, t
he

s

x-
nt

fo
n
e

he

ro

a

ab
d

s
g

as

on-
ich
t is

the

of
-

ing
all-
in-

g

JORDAN BRANKOV PHYSICAL REVIEW E 65 046111
rected percolation and diffusion-annihilation universal
classes@3,15,16#. To the best of our knowledge, the prese
study is the first step in the analytic confirmation of FSS
an exactly solved model of a driven lattice gas with op
boundaries. Since we are dealing with phase transition
the steady-state of the FASEP with discrete-time updates
equvalent two-dimensional lattice model is infinite in t
temporal direction but finite in the spatial one.

Note that the current has the same value in the case
forward-ordered (→), backward-ordered (←) sequential,
and sublattice-parallel (s-i) dynamics, i.e.,JL

→5JL
←5JL

s-i .
The corresponding local densities at sitei P$1, . . . ,L% are
related to each other@12#:

rL
→~ i !5rL

←~ i !2JL
→ , rL

s-i~ i !5H rL
→~ i !, i odd,

rL
←~ i !, i even.

~2!

As shown in Ref.@13#, the currentJL
i and local densityrL

i ( i )
for the FASEP with fully parallel update can be simply e
pressed in terms of those for the forward-ordered seque
update:

JL
i 5

JL
→

11JL
→ , rL

i ~ i !5
rL

→~ i !1JL
→

11JL
→ . ~3!

Due to these relations, the results derived here suffice
explicitly obtain the current and density FSS functions
each of the basic discrete-time updates. Concerning the
tation, we note that the exact finite-chain results obtain
in Ref. @10# are conveniently expressed in terms of t
parameters

d5A12p, a5d1d21, j5
p2a

ad
, h5

p2b

bd
,

~4!

which will be used here too.

II. FINITE-SIZE SCALING AT THE CONTINUOUS PHASE
TRANSITION

Let us consider first the continuous phase transition ac
the boundarya5ac ,bc<b<1 between the low-density
phase and the maximum-current phase. In terms of the v
ables~4! the equation of this boundary readsj51, 2d<h
<1; the MC phase occupies the region2d<j<1, 2d
<h<1, and the regionj.1>h>2d, called region AII,
lies in the LD phase, see Fig. 1.

According to the basic FSS hypotheses, the FSS vari
in the case of a continuous transition, characterized by
verging bulk correlation lengthl, should be given by the
ratio L/l, whereL is the finite-size of the system. As it i
well known, in the case at hand the inverse correlation len
lj

21 in the LD phase is, see, e.g., Refs.@14,17#,

lj
215 lnF11

~j21!2

j~a12!G ~j>1!, ~5!
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21[0 in the MC phase. Hence, the FSS variable

L→` andj→11 is expected to be given by

L/lj.
L~j21!2

j~a12!
ªx1

2~L,t !, ~6!

where

x1~L,t !.C1tL1/2, C15~a12!21/2, t5j21. ~7!

We emphasize that here we study a boundary induced n
equilibrium phase transition, and the physical quantity wh
measures the distance from the steady-state critical poin
related to the injection probabilityt5j21;12a/ac .

Consider now the finite-size currentJL(j,h)
5ZL21(j,h)/ZL(j,h), whereZL(j,h) is the normalization
constant of the steady-state probability for a lattice ofL sites.
The following exact representation ofZL(j,h) in the subre-
gion AII of the low-density phase (j.1>h) has been found
in Ref. @10#:

ZL
AII ~j,h!5S d

pD L j2j21

j2h
~a1j1j21!L1ZL

MC~j,h!.

~8!

Here the expression for the normalization constant in
maximum-current phase (jÞh),

ZL
MC~j,h!5S d

pD LF j

j2h
I L~j!1

h

h2j
I L~h!G , ~9!

involves the integral

I L~j!5
2

pE0

p

df
~a12 cosf!Lsin2f

122j cosf1j2 , ~10!

which is a nonanalytic function ofj at j51. For all finiteL
the normalization constantZL

AII (j,h) in region AII represents
an analytic continuation ofZL

MC(j,h) from the domainuju
,1 to the domainuju.1, see Ref.@10#.

A direct application of Laplace’s method for evaluation
the integral~10! asL→` shows that it changes its leading
order asymptotic behavior fromO(L23/2) for jÞ1 to
O(L21/2) for j51, see Eq.~14! in Ref. @17#. The finite-size
expression that interpolates between these limit
asymptotic forms can be readily obtained by using sm
argument expansion of the trigonometric functions in the
tegrand. The result forx1(L,t)5O(1) is

I L~j!.
~a12!L11/2

jApL
X~ ux1u!, ~11!

where the FSS functionX(•••) is given by

X~x!512Apxex2
@12F~x!#, F~x!5

2

Ap
E

0

x

e2t2dt.

~12!

Thus, keeping the 1/L corrections to the finite-size scalin
form, we obtain
1-2



o
l

te
n

io

o

ize

c

to

ase
ize

he

eter

ing

sity

FINITE-SIZE SCALING IN THE STEADY STATE OF . . . PHYSICAL REVIEW E 65 046111
ZL
MC~j,h!.S d

pD L 1

j2h

~a12!L11/2

ApL

3FX~ ux1u!2
h

~12h!2

a12

2L G . ~13!

The small- and large-argument asymptotic behavior
X(•••) readily follows from that of the Fresnel integra
F(•••):

X~x!5H 12Apx1O~x2!, as x→0,

1

2
x222

3

4
x241O~x26!, as x→`.

~14!

Let us first evaluate the asymptotic behavior of the fini
size correction to the bulk current in the maximum-curre
phase

JL
MC~j,h!2J`

MC5
ZL21

MC ~j,h!

ZL
MC~j,h!

2
p

d~a12!
, ~15!

asL→` andj→12 at fixedh,1. We readily obtain in the
leading order of magnitude

j@~a12!I L21~j!2I L~j!#.
u12ju3/2

j3/2

2

pE0

`

dx
e2x1

2x2
x4

11x2

5
~a12!3/2

2ApL3/2
@122x1

2X~ ux1u!#.

~16!

Hence we derive

JL
MC~j,h!2J`

MC.
1

L

p

2d~a12!
F122x1

2X~ ux1u!
X~ ux1u! G . ~17!

The asymptotic behavior of the above finite-size correct
to the current asx1→02 ~say, asj→12 at large fixedL)
follows from Eq.~14!:

JL
MC~1,h!2J`

MC.
1

L

p

2d~a12!
. ~18!

In the limiting casex1→2` ~say,L→` at j,1 fixed close
to unity!, we obtain that the finite-size correction is again
the orderO(L21):

JL
MC~j,h!2J`

MC.
1

L

3p

2d~a12!
. ~19!

Consider next the asymptotic behvior of the finite-s
correction to the bulk current in the low-density phase

JL
AII ~j,h!2J`

LD~j!5
ZL21

AII ~j,h!

ZL
AII ~j,h!

2
p

d~a1j1j21!
,

~20!
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as L→` and j→11 at fixed h,1. With the aid of the
identities

j@~a1j1j21!I L21~j!2I L~j!#5I L21~0!, ~21!

h@~a1j1j21!I L21~h!2I L~h!#

5I L21~0!1~j2h!~h2j21!I L21~h!, ~22!

we obtain in the leading order

JL
AII ~j,h!2J`

LD~j!.
1

L

p

2d~a12! F 1

2Apx1ex1
2
1X~x1!

G .

~23!

Hence, by using Eq.~14! we readily derive the asymptoti
behavior of the above finite-size correction asx1→01 ~say,
asj→11 at large fixedL):

JL
AII ~1,h!2J`

LD~1!.
1

L

p

2d~a12!
. ~24!

In the other limiting casex1→` ~say,L→` at j.1 fixed
close to unity!, we obtain that the finite-size corrections
the current are exponentially small:

JL
AII ~j,h!2J`

LD~j!5O~x1
21e2x1

2
!. ~25!

As a finite-size order parameter of the continuous ph
transition one could consider the difference in the finite-s
currents

DL~j,h!ªJL
MC~j,h!2JL

AII ~j,h! ~j.1,h,1!. ~26!

Here JL
MC(j,h) represents the analytic expression for t

finite-size current in the maximum-current phase, i.e.,JL
MC

5ZL21
MC /ZL

MC with ZL
MC defined by Eqs.~9! and ~10!, evalu-

ated in subregion AII of the low-density phase~at j.1,h
,1). For the corresponding bulk quantity we have

D`~j!5J`
MC2J`

LD~j!5
~a2ac!

2

p~12a!
, ~27!

which suggests the critical exponent for the order param
b52. In the finite-size case, by taking into account that

p

d~a12!
2

p

d~a1j1j21!
5

1

L

p

d~a12!

x1
2

11x1
2/L

,

~28!

and combining the above results, we obtain in the lead
order

DL~j,h!.
1

L

p

2d~a12! H x1

X~x1!Fx11
1

2Ap
e2x1

2
X~x1!G J .

~29!

Since the high-density phase maps onto the low-den
phase under the exchange of argumentsj↔h ~equivalently,
1-3
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a↔b), the FSS properties of the continuous transiti
across the boundaryb5bc , ac<a<1 between the high-
density phase and the maximum-current phase follow tr
ally from the above results and the particle-hole symmet

III. FINITE-SIZE SCALING AT THE FIRST-ORDER
TRANSITION

In the thermodynamic limit the first-order phase tran
tion, which occurs across the borderlineb5a, 0<a<ac
(h5j,j>1) between subregions AI and BI, manifests its
by a finite jump in the bulk density

rbulk
HD ~h!2rbulk

LD ~j!uj5h5
h2h21

a1h1h21
.0. ~30!

Quite peculiarly, this transition is characterized by anot
divergingcorrelation length

l215ulj
212lh

21u5
12h22

a1h1h21
uj2hu1O~ uj2hu2!,

~31!

which suggests the finite-size scaling variable

x̃2ªL/l.C2uhuL, C25
12h22

a1h1h21
, h5j2h.

~32!

Our analysis starts with the exact result found for t
finite-chain local densityrL

D( i ;j,h) in region D5AIøBI of
the phase diagram, see Eqs.~4.21! and ~A13! in Ref. @10#.
This result can be cast in the form (jÞh)

rL
D~ i ;j,h!5

12p

p
JL

D~j,h!1ṼL
D~ i ;j,h!, ~33!

where

ṼL
D~ i ;j,h!5S d

pD L ~a12!L21

~j2h!ZL
D

@~12j22!e(L21)/lj

1~j2j21!~h2h21!e( i 21)/lje(L2 i )/lh

2~h221!e(L21)/lh#2S d

pD L ~a12!L21

ZL
D

3F ~j2j21!e( i 21)/ljS p

dD L2 i ZL2 i
MC

~a12!L2 i

2~h2h21!e(L2 i )/lhS p

dD i 21 Zi 21
MC

~a12! i 21G
1

d

2p

1

ZL
D FFL~ i ;j,h!2~j2h!Zi 21

MC ZL2 i
MC

1
p

d
ZL

MC2aZL21
MC G . ~34!
04611
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For brevity of notation we have omitted the argumentsj and
h of the function ZL(j,h). Here the term FL( i )
5FL( i ;j,h) is the antisymmetric~with respect to the cente
of the chain! function of the integer coordinatei,
FL( i ;j,h)52FL(L2 i 11;j,h), defined for 1< i<@L/2#
~where@x# denotes the integer part ofx) by the equation

FL~ i ;j,h!5S d

pD L21

~12jh! (
n50

L22i

I L2 i 2n21~j!I i 1n21~h!.

~35!

The normalization constant in the region D5AIøBI ( j
.1,h.1) for jÞh is given by

ZL
D~j,h!5S d

pD L ~a12!L

j2h
@~j2j21!eL/lj2~h2h21!eL/lh#

1ZL
MC~j,h!. ~36!

Let us analyze this expression whenj5h1h, h→0. For
ZL

MC(h1h,h) we have

ZL
MC~h1h,h!5S d

pD L 1

h
@~h1h!I L~h1h!2hI L~h!#

52S d

pD L

~h221!KL~h!1O~h!, ~37!

where

KL~h!5
2

pE0

p

df
~a12 cosf!Lsin2f

~122h cosf1h2!2 . ~38!

For j5h1h, asL→` andh→0 we have

L/lh1h5L/lh1C2hL1O~Lh2!, ~39!

hence

ZL
D~h1h,h!5S d

pD L

~a12!LF ~h2h21!eL/lh
eC2hL21

h

1O~1!G . ~40!

Next, by using the upper boundI k(j)<(a12)kI 0(j), where
I 0(j)51 for uju<1 and I 0(j)5j22 for uju>1, one easily
obtains that in region D

uFL~ i ;j,h!u<5S d

pD L21 jh21

j2h2 ~L21!~a12!L22.

~41!

Therefore, in view of Eq.~40!, the contribution of the term
proportional toFL( i ;j,h) into the local density is exponen
tially small. Thus, only the first three terms in the right-ha
side of Eq.~34! contribute into the leading-order expressio

for ṼL
D(h1h,h):
1-4
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ṼL
D~ i ;h1h,h!.

h21

a1h1h21
1~h2h21!

eC2hi21

eC2hL21
.

~42!

In deriving the above expression we have assumed that
i @1 andL2 i @1. Finally, by taking into account that

JL
D~h1h,h!5

p

d~a1h1h21!
1O~h!, ~43!

we obtain the leading order expression for the local den
on the macroscopic scalei /L5r , 0,r ,1:

rL
D~rL ;j,h!5

1

a1h1h21 Fd1h211~h2h21!
ex2r21

ex221
G .

~44!

Here we have introduced the FSS variablex25C2hL, com-
pare with Eq.~32!. In the limit x2→0 the above expressio
reduces to the well-known linear density profile on the co
istence linej5h:

rL
D~rL ;h,h!5

d1h211~h2h21!r

a1h1h21
. ~45!

In the limit x2→1` (x2→2`) one recovers the bulk den
sity in the low-density~high-density! phase.

IV. DISCUSSION

The mathematical mechanism of the phase transition
the FASEP with open boundaries has been revealed in
@10# as qualitative changes in the spectrum of the latt
translation operatorC @18#. In the regionj<1, h<1, occu-
pied by the maximum-current phase, the spectrum is cont
ous and fills with uniform density the interval from (d/p)
3(a22) to (d/p)(a12). Whenh<1 butj becomes larger
than unity, an eigenvalue

n~j!5~d/p!~a1j1j21! ~46!

splits up from the continuous spectrum and dominates
properties of the low-density phase in region AII. Due
particle-hole symmetry, whenj<1 but h exceeds unity, the
te

a

c
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eigenvalue that splits up from the continuous spectrum
dominates the properties of the high-density phase in reg
BII is n(h). Thus, the logarithm of the ratio of the corre
sponding eigenvalue to the ceiling of the continuous sp
trum defines the relevant inverse correlation lengthlj

21 or
lh

21 , see Eq.~5!. When bothj.1 andh.1, which is the
case in region D5AIøBI, there are two eigenvaluesn(j)
andn(h), above the continuous spectrum. Obviously, the
eigenvalues become degenerate on the coexistence lij
5h.1, which explains the appearance of the diverging c
relation length~31!. Note that the explicit expressions for th
correlation lengths depends on the type of update only: t
are the same for all the true discrete-time updates, and fo
random sequential update, see Eq.~78! in Ref. @7#,

la
215 lnF11

~1/22a!2

a~12a! G . ~47!

The physical meaning of the above correlation leng
emerges in the domain wall picture developed in Ref.@19#:
the lengthslj , lh , and l are interpreted as localizatio
lengths of the domain walls between the low-densit
maximum-current, high-density–maximum-current, and lo
density–high-density phases, respectively. The complete
localization of the low-density–high-density domain wall o
the coexistence line explains the linear density profile~45!: it
is the result of ensemble averaging over configurations w
uniform probability distribution of the domain wall positio
@6#.

Thus, the FSS variable for any of the phase transition
the FASEP with open boundaries has the physical mean
of a ratio of the chain length to the localization length of t
relevant domain wall. The explicit expressions for the F
functions have been derived here for the model w
forward-ordered sequential update. The corresponding
pressions for the other basic discrete-time updates follow
der the mappings mentioned in the Introduction.
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